Abstract-An experimental study on the use of ultra-wideband antenna systems (3.5-4.5 GHz) on the human body for wireless body area network (WBAN) applications is conducted. It has been found that the link reliability can be improved and transmit power can be reduced by properly selecting the transmit and receive antennas with different radiation properties (omni-directional, directional, pattern diversity) and polarizations (vertical and horizontal) at each location on the body. Moreover, when there is blockage by the body, it may be possible to achieve better transmission when the antennas are horizontally polarized. Also, antennas with pattern diversity can be used to enhance the overall reliability of the communication system. In order to eliminate the use of cables in the measurements, an on-body UWB system has been developed and the reliability can be assessed more practically in terms of the peak amplitude of the received waveform and the bit error rate. It has been observed that when the link quality is improved, the transmit power can be reduced by more than 20 dB without compromising on the reliability, which will conserve the battery power.Index Terms-Antennas, bit error rate, diversity, propagation measurements, RF transmission, ultrawide band, wireless body area network.