Binomial trees are used to price barrier options. Since barrier options are path dependent, option values of each node are calculated from binomial trees using backward induction. We use generalized Catalan numbers to determine the number of cases not reaching a barrier. We will generalize Catalan numbers by imposing upper and lower bounds. Reaching a barrier in binomial trees is determined by the difference between the number of up states and down states. If we count the cases that the differences between the up states and down states remain in a specific range, the probability of not reaching a barrier is obtained at a final node of the tree. With probabilities and option values at the final nodes of the tree, option prices are computable by discounting the expected option value at expiry. Without calculating option values in the middle nodes of binomial trees, option prices are computable only with final option values. We can obtain a probability distribution of exercising an option at expiry. Generalized Catalan numbers are expected to be applicable in many other areas.