We present a novel cortically-inspired image completion algorithm. It uses five-dimensional sub-Riemannian cortical geometry, modeling the orientation, spatial frequency and phase-selective behavior of the cells in the visual cortex. The algorithm extracts the orientation, frequency and phase information existing in a given two-dimensional corrupted input image via a Gabor transform and represents those values in terms of cortical cell output responses in the model geometry. Then, it performs completion via a diffusion concentrated in a neighborhood along the neural connections within the model geometry. The diffusion models the activity propagation integrating orientation, frequency and phase features along the neural connections. Finally, the algorithm transforms the diffused and completed output responses back to the two-dimensional image plane.