Using the derivative operators’ q-analogs values, a wide variety of holomorphic function subclasses, q-starlike, and q-convex functions have been researched and examined. With the aid of fundamental ideas from the theory of q-calculus operators, we describe new q-operators of harmonic function Hϱ,χ;qγF(ϖ) in this work. We also define a new harmonic function subclass related to the Janowski and q-analog of Le Roy-type functions Mittag–Leffler functions. Several important properties are assigned to the new class, including necessary and sufficient conditions, the covering Theorem, extreme points, distortion bounds, convolution, and convex combinations. Furthermore, we emphasize several established remarks for confirming our primary findings presented in this study, as well as some applications of this study in the form of specific outcomes and corollaries.