Using digital twin models of tunnels has become critical to their efficient maintenance and management. A high-precision 3D tunnel model is the prerequisite for a successful digital twin model of tunnel applications. However, constructing high-precision 3D tunnel models with high-quality textures and structural integrity based on mobile laser scanning data remains a challenge, particularly for tunnels of different shapes. This study addresses this problem by developing a novel method for the 3D reconstruction of multi-shaped tunnels based on mobile laser scanning data. This method does not require any predefined mathematical models or projection parameters to convert point clouds into 2D intensity images that conform to the geometric features of tunnel linings. This method also improves the accuracy of 3D tunnel mesh models by applying an adaptive threshold approach that reduces the number of pseudo-surfaces generated during the Poisson surface reconstruction of tunnels. This method was experimentally verified by conducting 3D reconstruction tasks involving tunnel point clouds of four different shapes. The superiority of this method was further confirmed through qualitative and quantitative comparisons with related approaches. By automatically and efficiently constructing a high-precision 3D tunnel model, the proposed method offers an important model foundation for digital twin engineering and a valuable reference for future tunnel model construction projects.