The maximum likelihood (ML) method achieves an excellent performance for DOA estimation. However, its computational complexity is too high for a multidimensional nonlinear solution search. To address this issue, an improved bee evolutionary genetic algorithm (IBEGA) is applied to maximize the likelihood function for DOA estimation. First, an opposition-based reinforcement learning method is utilized to achieve a better initial population for the BEGA. Second, an improved arithmetic crossover operator is proposed to improve the global searching performance. The experimental results show that the proposed algorithm can reduce the computational complexity of ML DOA estimation significantly without sacrificing the estimation accuracy.