This paper proposes an improved coyote optimization algorithm (ICOA) for optimizing the location and sizing of solar photovoltaic distribution generation units (PVDGUs) in radial distribution systems. In the considered problem, four single objectives consisting of total power losses, capacity of all PVDGUs, voltage profile index, and harmonic distortions are minimized independently while satisfying branch current limits, voltage limits, and harmonic distortion limits exactly and simultaneously. The performance of the proposed ICOA method has been improved significantly since two improvements were carried out on the two new solution generations of the conventional coyote optimization algorithm (COA). By finding four single objectives from two IEEE distribution power systems with 33 buses and 69 buses, the impact of each proposed improvement and two proposed improvements on the real performance of ICOA has been investigated. ICOA was superior to COA in terms of capability of finding higher quality solutions, more stable search ability, and faster convergence speed. Furthermore, we have also applied five other metaheuristic algorithms consisting of biogeography-based optimization (BBO), genetic algorithm (GA), particle swarm optimization algorithm (PSO), sunflower optimization (SFO), and salp swarm algorithm (SSA) for dealing with the same problem and evaluating further performance of ICOA. The result comparisons have also indicated the outstanding performance of ICOA because it could find much better results than these methods, especially SFO, SSA, and GA. Consequently, the proposed ICOA is a very effective method for finding the optimal location and capacity of PVDGUs in radial distribution power systems.