Ice accretion endangers the safety and reliability of equipment operation in frigid regions. Silicone polymer icephobic coatings present themselves as an effective strategy. However, they face durability challenges, which is a crucial foundation for expanding their application. In this work, a durable icephobic coating was prepared based on an epoxy/polydimethylsiloxane (PDMS) interpenetrating polymer network (IPN) gel. In the process, epoxy was used to improve mechanical performance. IPN technology was used to integrate PDMS and epoxy. Low-molecular-weight silicone oil was used to adjust the elastic modulus of the coating by reducing crosslinking. The mechanical properties, icephobicity and durability of the coatings were characterized through elastic modulus measurements, ice adhesion strength tests, and icing/deicing cycle tests, respectively. Results shows the ice adhesion strength of the epoxy/PDMS IPN gel coating was approximately 8 kPa when the elastic modulus was 0.18 MPa. Additionally, the epoxy/PDMS IPN gel has good durability, weather resistance, and substrate adhesion. After 25 icing/deicing cycle tests, the coating remained undamaged, and the ice adhesion strength was stable in the range of 3–14 kPa. Within the range of −5 to −30 °C, the ice adhesion strength of the coating was stable and less than 20 kPa. After 168 h of salt spray aging test, the ice adhesion strength of the coating was maintained at 48.72 ± 5.27 kPa. This can provide a reference for an icephobic coating design.