2016
DOI: 10.3991/ijim.v10i3.5056
|View full text |Cite
|
Sign up to set email alerts
|

A Support Vector Machine Classification of Computational Capabilities of 3D Map on Mobile Device for Navigation Aid

Abstract: Abstract-3D maps for mobile devices provide more realistic views of environments and serve as better navigation aids. Previous research studies show differences on how 3D maps effect the acquisition of spatial knowledge. This is attributable to the differences in mobile device computational capabilities. Crucial to this is the time it takes for a 3D map dataset to be rendered for a complete navigation task. Different findings suggest different approaches on how to solve the problem of time required for both in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
3

Year Published

2016
2016
2022
2022

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 19 publications
0
4
0
3
Order By: Relevance
“…The same experiment was repeated, but this time with Support Vector Machine as it is another popular and very frequently used classifier [32]. By using SVM, the following measures are achieved as shown in Table 7 Table 7 Table 7 shows that Naïve Bayes has achieved better accuracy than SVM.…”
Section: Results and Analysismentioning
confidence: 99%
“…The same experiment was repeated, but this time with Support Vector Machine as it is another popular and very frequently used classifier [32]. By using SVM, the following measures are achieved as shown in Table 7 Table 7 Table 7 shows that Naïve Bayes has achieved better accuracy than SVM.…”
Section: Results and Analysismentioning
confidence: 99%
“…Support Vector Machine (SVM) merupakan salah satu contoh penerapan algoritma yang dapat digunakan untuk permasalahan klasifikasi, analisis regresi dan prediksi dengan menggunakan model secara linear dimana data terpisah menjadi dua buah atau lebih kelas yang terpisah berdasarkan nilai hyperplane optimal diantara masing-masing kelas. Hyperplane yang optimal merupakan nilai maksimum jarak antar kelas dalam suatu model [1].…”
Section: Support Vector Machine (Svm)unclassified
“…Pada dasarnya SVM merupakan algoritma yang digunakan untuk mengklasifikasi data yang linear namun pada kasus non-linear separable dataset pada algoritma SVM dapat dilakukan dengan menggunakan fungsi kernel. Pada algoritma SVM terdaoat empat jenis kernel yang dapat digunakan untuk melakukan klasifikasi diantaranya yaitu linear, polynomial, sigmoid dan rbf[1].…”
unclassified
“…SVM telah menunjukkan kinerja yang dapat diterima jika dibandingkan dengan metode lain, terutama bila digunakan untuk klasifikasi [4]. Pada prinsipnya SVM dapat secara efisien melakukan klasifikasi linier dan non-linier, dan metode didasarkan pada minimalisasi risiko struktural yang paling akurat untuk mengklasifikasikan teks karena berfokus pada kelas terpisah [5].…”
Section: Support Vector Machineunclassified