Three wood species including Eucalyptus grandis (E. grandis), Southern pine (S. pine), and Norway spruce thermomechanical pulp (N. spruce TMP) were dissolved in the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([Amim]Cl), and then they were pretreated with small amounts of hydrochloric acid, as a function of time. The materials regenerated from the IL solutions were determined to contain significantly higher amounts of lignin than the original wood. Detailed analyses of the recovered IL revealed the presence of typical wood degradation compounds, such as 5-hydroxymethylfurfural, furan-2-carboxylic acid, catechol, methylcatechol, methylguaiacol, acetoguaiacone, and acetol. The acidic pretreatment of these wood species in IL resulted in not only the near-complete hydrolysis of cellulose and hemicelluloses but also in a significant amount of lignin degradation. Aqueous reactions (under identical acid concentrations) showed a remarkably lower efficiency, demonstrating that ILs offer a unique environment for the acid-catalyzed dehydration chemistry, which is known to occur when polysaccharides and/or wood are subjected to an acid treatment.