Polymers attached by one end to an interface at relatively high coverage stretch away from the interface to avoid overlapping, forming a polymer "brush." This simple picture may serve as the basis for models in diverse interfacial systems in polymer science, such as polymeric surfactants, stabilized suspensions of colloidal particles, and structures formed by block copolymers. The structure and dynamics of polymer brushes have been the subject of considerable theoretical and experimental activity in recent years. An account is given of recent advances in theoretical understanding of stretched polymers at interfaces, and the diverse experimental probes of systems modeled by brushes are briefly reviewed.