Mycobacteriosis is mainly caused by two groups of species: Mycobacterium tuberculosis and non-tuberculosis mycobacteria (NTM). The pathogens cause not only respiratory infections, but also general diseases. The common problem in these pathogens as of today is drug resistance. Tuberculosis (TB) is a major public health concern. A major challenge in the treatment of TB is anti-mycobacterial drug resistance (AMR), including multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Recently, the success rate of the treatment of drug-resistant tuberculosis (DR-TB) has improved significantly with the introduction of new and repurposed drugs, especially in industrialized countries such as Japan. However, long-term treatment and the adverse events associated with the treatment of DR-TB are still problematic. To solve these problems, optimal treatment regimens designed/tailor-made for each patient are necessary, regardless of the location in the world. In contrast to TB, NTM infections are environmentally oriented. Mycobacterium avium-intracellulare complex (MAC) and Mycobacterium abscessus species (MABS) are the major causes of NTM infections in Japan. These bacteria are naturally resistant to a wide variation of antimicrobial agents. Macrolides, represented by clarithromycin (CLR) and amikacin (AMK), show relatively good correlation with treatment success. However, the efficacies of potential drugs for the treatment of macrolide-resistant MAC and MABS are currently under evaluation. Thus, it is particularly difficult to construct an effective treatment regimen for macrolide-resistant MAC and MABS. AMR in NTM infections are rather serious in Japan, even when compared with challenges associated with DR-TB. Given the AMR problems in TB and NTM, the appropriate use of drugs based on accurate drug susceptibility testing and the development of new compounds/regimens that are strongly bactericidal in a short-time course will be highly expected.