Solar prominences are one of the most common features of the solar atmosphere. They are found in the corona but they are one hundred times cooler and denser than the coronal material, indicating that they are thermally and pressure isolated from the surrounding environment. Because of these properties they appear at the limb as bright features when observed in the optical or the EUV cool lines. On the disk they appear darker than their background, indicating the presence of a plasma absorption process (in this case they are called filaments). Prominence plasma is embedded in a magnetic environment that lies above magnetic inversion lines, denoted a filament channel.This paper aims at providing the reader with the main elements that characterize these peculiar structures, the prominences and their environment, as deduced from observations. The aim is also to point out and discuss open questions on prominence existence, stability and disappearance.The review starts with a general introduction of these features and the instruments used for their observation. Section 2 presents the large scale properties, including filament morphology, thermodynamical parameters, magnetic fields, and the properties of the surrounding coronal cavity, all in stable conditions. Section 3 is dedicated to small-scale observational properties, from both the morphological and dynamical points of view. Section 4 introduces observational aspects during prominence formation, while Section 5 reviews the sources of instability leading to prominence disappearance or eruption. Conclusions and perspectives are given in Section 6.