Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
High-quality visibility forecasting benefits traffic transportation safety, public services, and tourism. For a more accurate forecast of the visibility in the Guizhou region of China, we constructed several visibility forecasting models via progressive refinements in different compositions of input observational variables and the adoption of the Unet architecture to perform hourly visibility forecasts with lead times ranging from 0 to 72 h over Guizhou, China. Three Unet-based visibility forecasting models were constructed according to different inputs of meteorological variables. The model training via multiple observational variables and visibility forecasts of a high-spatiotemporal-resolution numerical weather prediction model (China Meteorological Administration, Guangdong, CMA-GD) produced a higher threat score (TS), which led to substantial improvements for different thresholds of visibility compared to CMA-GD. However, the Unet-based models had a larger bias score (BS) than the CMA-GD model. By introducing the U2net architecture, there was a further improvement in the TS of the model by approximately a factor of two compared to the Unet model, along with a significant reduction in the BS, which enhanced the stability of the model forecast. In particular, the U2net-based model performed the best in terms of the TS below the visibility threshold of 200 m, with a more than eightfold increase over the CMA-GD model. Furthermore, the U2net-based model had some improvements in the TS, BS, and RMSE (root-mean-square error) compared to the LSTM_Attention model. The spatial distribution of the TS showed that the U2net-based model performed better at the model grid scale of 3 km than at the scale of individual weather stations. In summary, the visibility forecasting model based on the U2net algorithm, multiple observational variables, and visibility data from the CMA-GD model performed the best. The compositions of input observational variables were the key factor in improving the deep learning model’s forecasting capability, and these improvements could improve the value of forecasts and support the socioeconomic needs of sectors reliant on visibility forecasting.
High-quality visibility forecasting benefits traffic transportation safety, public services, and tourism. For a more accurate forecast of the visibility in the Guizhou region of China, we constructed several visibility forecasting models via progressive refinements in different compositions of input observational variables and the adoption of the Unet architecture to perform hourly visibility forecasts with lead times ranging from 0 to 72 h over Guizhou, China. Three Unet-based visibility forecasting models were constructed according to different inputs of meteorological variables. The model training via multiple observational variables and visibility forecasts of a high-spatiotemporal-resolution numerical weather prediction model (China Meteorological Administration, Guangdong, CMA-GD) produced a higher threat score (TS), which led to substantial improvements for different thresholds of visibility compared to CMA-GD. However, the Unet-based models had a larger bias score (BS) than the CMA-GD model. By introducing the U2net architecture, there was a further improvement in the TS of the model by approximately a factor of two compared to the Unet model, along with a significant reduction in the BS, which enhanced the stability of the model forecast. In particular, the U2net-based model performed the best in terms of the TS below the visibility threshold of 200 m, with a more than eightfold increase over the CMA-GD model. Furthermore, the U2net-based model had some improvements in the TS, BS, and RMSE (root-mean-square error) compared to the LSTM_Attention model. The spatial distribution of the TS showed that the U2net-based model performed better at the model grid scale of 3 km than at the scale of individual weather stations. In summary, the visibility forecasting model based on the U2net algorithm, multiple observational variables, and visibility data from the CMA-GD model performed the best. The compositions of input observational variables were the key factor in improving the deep learning model’s forecasting capability, and these improvements could improve the value of forecasts and support the socioeconomic needs of sectors reliant on visibility forecasting.
Combining medical IoT and artificial intelligence technology is an effective approach to achieve the intelligence of medical equipment. This integration can address issues such as low image quality caused by fluctuations in power quality and potential equipment damage, and this study proposes a predictive model, ISSA-TCN-BiLSTM, based on a bi-directional long short-term memory network (BiLSTM). Firstly, power quality data and other data from MRI and CT equipment within a 6-month period are collected using current fingerprint technology. The key factors affecting the active power of medical equipment are explored using the Pearson coefficient method. Subsequently, a Temporal Convolutional Network (TCN) is employed to conduct multi-layer convolution operations on the input temporal feature sequences, enabling the learning of global temporal feature information while minimizing the interference of redundant data. Additionally, bidirectional long short-term memory (BiLSTM) is integrated to model the intermediate active power features, facilitating accurate prediction of medical equipment power quality. Additionally, an improved Sparrow Search Algorithm (ISSA) is utilized for hyperparameter optimization of the TCN-BiLSTM model, enabling optimization of the active power of different medical equipment. Experimental results demonstrate that the ISSA-TCN-BiLSTM model outperforms other comparative models in terms of RMSE, MSE, and R2, with values of 0.1143, 0.1157, 0.0873, 0.0817, 0.95, and 0.96, respectively, for MRI and CT equipment. This model exhibits both prediction speed and accuracy in power prediction for medical equipment, providing valuable guidance for equipment maintenance and diagnostic efficiency enhancement.
This research addresses the application of a neural network as a tool for early fault detection in the motors of a paper machine under a simulated environment. It proposes the analysis of variables from a torque control loop. The data for training and validating the model is obtained through the simulation of Direct Torque Control (DTC) of an AC motor in Simscape within Simulink. Both normal and faulty operating modes are considered. Under these two scenarios, various speed setpoints are configured, and the necessary data for training the developed model is collected
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.