2001
DOI: 10.1016/s0925-2312(00)00308-8
|View full text |Cite
|
Sign up to set email alerts
|

A survey of hybrid ANN/HMM models for automatic speech recognition

Abstract: In spite of the advances accomplished throughout the last decades, automatic speech recognition (ASR) is still a challenging and di$cult task. In particular, recognition systems based on hidden Markov models (HMMs) are e!ective under many circumstances, but do su!er from some major limitations that limit applicability of ASR technology in real-world environments. Attempts were made to overcome these limitations with the adoption of arti"cial neural networks (ANN) as an alternative paradigm for ASR, but ANN wer… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
72
0
5

Year Published

2001
2001
2023
2023

Publication Types

Select...
6
2
1

Relationship

1
8

Authors

Journals

citations
Cited by 157 publications
(78 citation statements)
references
References 123 publications
1
72
0
5
Order By: Relevance
“…In later paragraphs, we briefly describe some of the most relevant ones. A complete survey about this subject can be found in [20].…”
Section: Hybrid Systemsmentioning
confidence: 99%
“…In later paragraphs, we briefly describe some of the most relevant ones. A complete survey about this subject can be found in [20].…”
Section: Hybrid Systemsmentioning
confidence: 99%
“…Therefore, FNN architecture simplification or model's complexity reduction is a challenging task. Such problem can be addressed through the integration of FNN with statistical methods like the one usually done with hidden Markov model [348]. Therefore, such kind of modification to network architecture and specialized node design may lead to different paradigms of FNN that may solve various real-world complex problems.…”
Section: Challenges and Future Scopesmentioning
confidence: 99%
“…El problema de reconocimiento automático del habla (ASR-"Audio Speech Recognition") mediante el análisis de señales de audio ha sido ampliamente abordado en la literatura [15,19]. Reconocimiento del habla basado en fonemas La aproximación más natural en sistemas ASR es usar fonemas como unidades básicas que conforman el habla, ya que de esta forma los humanos reconocemos la información contenida en la señal de voz, concatenando sonidos que forman las palabras; siendo capaces además de ignorar aquellos sonidos que no conllevan a una respuesta lógica y separar palabras que unimos cuando hablamos de forma continua.…”
Section: Sistema De Reconocimiento Del Habla Usando Sólo Audio (Asr)unclassified
“…El problema de reconocimiento automático del habla en señales de audio se ha tratado regularmente a través del modelado de las señales, utilizando técnicas como Redes Neuronales [14] o Modelos Ocultos de Markov [19], las cuales reportan buenos resultados en la literatura. Sin embargo, cuando las condiciones acústicas son adversas, su desempeño se ve afectado.…”
Section: Introductionunclassified