Network science has witnessed a surge in popularity, driven by the transformative power of node representation learning for diverse applications like social network analysis and biological modeling. While shallow embedding algorithms excel at capturing network structure, they face a critical limitation—failing to generalize to unseen nodes. This paper addresses this challenge by introducing Inductive Shallow Node Embedding—as a main contribution—pioneering a novel approach that extends shallow embeddings to the realm of inductive learning. It has a novel encoder architecture that captures the local neighborhood structure of each node, enabling effective generalization to unseen nodes. In the generalization, robustness is essential to avoid degradation of performance arising from noise in the dataset. It has been theoretically proven that the covariance of the additive noise term in the proposed model is inversely proportional to the cardinality of a node’s neighbors. Another contribution is a mathematical lower bound to quantify the robustness of node embeddings, confirming its advantage over traditional shallow embedding methods, particularly in the presence of parameter noise. The proposed method demonstrably excels in dynamic networks, consistently achieving over 90% performance on previously unseen nodes compared to nodes encountered during training on various benchmarks. The empirical evaluation concludes that our method outperforms competing methods on the vast majority of datasets in both transductive and inductive tasks.