Among the various types of spyware, screenloggers are distinguished by their ability to capture screenshots. This gives them considerable nuisance capacity, giving rise to theft of sensitive data or, failing that, to serious invasions of the privacy of users. Several examples of attacks relying on this screen capture feature have been documented in recent years. However, there is not sufficient empirical and experimental evidence on this topic. Indeed, to the best of our knowledge, there is no dataset dedicated to screenshot-taking malware until today. The lack of datasets or common testbed platforms makes it difficult to analyse and study their behaviour in order to develop effective countermeasures. The screenshot feature is often a smart feature that does not activate automatically once the malware has infected the machine; the activation mechanisms of this function are often more complex. Consequently, a dataset which is completely dedicated to them would make it possible to better understand the subtleties of triggering screenshots and even to learn to distinguish them from the legitimate applications widely present on devices. The main purpose of this paper is to build such a dataset and analyse the behaviour of screenloggers.