Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Modern database management systems (DBMS), primarily designed as general-purpose systems, face the challenging task of efficiently handling data from diverse sources for both analytical services and online transactional processing (OLTP). The volume of data has grown significantly, with distributions ranging from linear to highly skewed, sometimes involving very slow changes or rapid, intensive updates. Recent research in this field has been significantly influenced by advances in machine learning (ML), particularly deep learning (DL), and these developments have led to the application of various ML algorithms to enhance the efficiency of different parts of the query execution engine. While previous research studies were mostly focused on identifying drawbacks to individual components, such as the query optimizer, there is a notable lack of studies examining the applicability and effectiveness of various machine learning approaches across multiple aspects of the query execution engine. This article aims to provide a systematic review of approaches that apply deep learning models at various levels within the query execution engine. We categorize these approaches into three groups based on how such models are applied: improving performance of index structures and consequently data manipulation algorithms, query optimization tasks, and externally controlling query optimizers through parameter tuning. Furthermore, we discuss the key challenges associated with implementing deep learning algorithms in DBMS.
Modern database management systems (DBMS), primarily designed as general-purpose systems, face the challenging task of efficiently handling data from diverse sources for both analytical services and online transactional processing (OLTP). The volume of data has grown significantly, with distributions ranging from linear to highly skewed, sometimes involving very slow changes or rapid, intensive updates. Recent research in this field has been significantly influenced by advances in machine learning (ML), particularly deep learning (DL), and these developments have led to the application of various ML algorithms to enhance the efficiency of different parts of the query execution engine. While previous research studies were mostly focused on identifying drawbacks to individual components, such as the query optimizer, there is a notable lack of studies examining the applicability and effectiveness of various machine learning approaches across multiple aspects of the query execution engine. This article aims to provide a systematic review of approaches that apply deep learning models at various levels within the query execution engine. We categorize these approaches into three groups based on how such models are applied: improving performance of index structures and consequently data manipulation algorithms, query optimization tasks, and externally controlling query optimizers through parameter tuning. Furthermore, we discuss the key challenges associated with implementing deep learning algorithms in DBMS.
Although IoT has proven to be a vital instrument for data collection, epidemiological data collection has presented a significant challenge to the AI community. Thus, data for epidemiological research from multiple sources needs to be integrated to gain a holistic insight into epidemiological incidences. Hence, the authors aim to provide a framework for collecting, aggregating, and fusing data from diverse IoT sources for epidemiological research. Thus, a wireless network is designed for energy efficiency and communication efficiency. In addition, the CoAP mechanism for data transfer to a cloud-based service for aligning, de-duplicating, aggregating, and mapping data from several sources is presented. Subsequently, the researchers trained three machine learning models to predict disease incidence, vector abundance, and host population using both synthesized data using the proposed framework and data captured using traditional means. They assessed the performance of the two models by measuring their accuracy and learning rate. Results show the superiority of the proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.