Abstract-1 Wireless ad hoc networks suffer from several limitations, such as routing failures, potentially excessive bandwidth requirements, computational constraints and limited storage capability. Their routing strategy plays a significant role in determining the overall performance of the multi-hop network. However, in conventional network design only one of the desired routing-related objectives is optimized, while other objectives are typically assumed to be the constraints imposed on the problem. In this paper, we invoke the Non-dominated Sorting based Genetic Algorithm-II (NSGA-II) and the MultiObjective Differential Evolution (MODE) algorithm for finding optimal routes from a given source to a given destination in the face of conflicting design objectives, such as the dissipated energy and the end-to-end delay in a fullyconnected arbitrary multi-hop network. Our simulation results show that both the NSGA-II and MODE algorithms are efficient in solving these routing problems and are capable of finding the Pareto-optimal solutions at lower complexity than the 'brute-force' exhaustive search, when the number of nodes is higher than or equal to 10. Additionally, we demonstrate that at the same complexity, the MODE algorithm is capable of finding solutions closer to the Pareto front and typically, converges faster than the NSGA-II algorithm.