Cell-free extracts of UV-irradiated rice (Oryza sativa L.) leaves have a much greater capacity for the synthesis from geranylgeranyl pyrophosphate of diterpene hydrocarbons, including the putative precursors of rice phytoalexins, than extracts of unstressed leaves (KA Wickham, CA West [1992] Arch Biochem Biophys 293: 320-332). An elicitor bioassay was developed on the basis of these observations in which 6-day-old rice cell suspension cultures were incubated for 40 hours with the substance to be tested, and an enzyme extract of the treated cells was assayed for its diterpene hydrocarbon synthesis activity as a measure of the response to elicitor. Four types of cell wall polysaccharides and oligosaccharide fragments that have elicitor activity for other plants were tested. Of these, polymeric chitin was the most active; a suspension concentration of approximately 7 micrograms per milliliter gave 50% of the maximum response in the bioassay. Chitosan and a branched fl-1,3-glucan fraction from Phytophthora megasperma f.sp. glycinea cell walls were only weakly active, and a mixture of oligogalacturonides was only slightly active. A crude mycelial cell wall preparation from the rice pathogen, Fusarium moniliforme, gave a response comparable to that of chitin, and this activity was sensitive to predigestion of the cell wall material with chitinase before the elicitor assay. N-Acetylglucosamine, chitobiose, chitotriose, and chitotetrose were inactive as elicitors, whereas a mixture of chitin fragments solubilized from insoluble chitin by partial acid hydrolysis was highly active. Constitutive chitinase activity was detected in the culture filtrate and enzyme extract of cells from a 6-day-old rice cell culture; the amount of chitinase activity increased markedly in both the culture filtrate and cell extracts after treatment of the culture with chitin. We propose on the basis of these results that soluble chitin fragments released from fungal cell walls through the action of constitutive rice chitinases serve as biotic elicitors of defense-related responses in rice.