β-Lactoglobulin (β-LG) can bind to fatty acids such as oleic acid (OA) and linoleic acid (LA). Another whey protein, α-lactalbumin (α-LA), can also bind to OA to give the complex α-LA-OA, which has antitumor properties. Based on reports that the activity of α-LA-OA is highly dependent on OA, as well as the acquisition of similar complexes using other proteins, such as lysozyme and lactoferrin, we speculated whether β-LG could also kill tumor cells after binding to other fatty acids. Therefore, we prepared complexes of β-LG with OA (β-LG-OA) and LA (β-LG-LA) in the current study and evaluated them in terms of antitumor activity and thermostability using the methylene blue method and differential scanning calorimetry, respectively. The structural features of these complexes were also evaluated using fluorescence spectroscopy and circular dichroism. The binding dynamics of OA and LA to β-LG were studied using isothermal titration calorimetry. Cell viability results revealed that β-LG-LA and β-LG-OA exhibited similar antitumor activities. Interestingly, the binding of β-LG to LA led to an increase in its thermostability, whereas its binding to OA had very little effect. The environments of the tryptophan residues in the β-LG-OA and β-LG-LA complexes were very different, with the residues being blue- and red-shifted, respectively. Furthermore, the hydrophobic regions in β-LG were buried after binding of OA, which was slightly changed in β-LG-LA. Circular dichroism results showed that β-LG-OA enhanced the tertiary structure, which was partially lost in β-LG-LA. There were more binding sites for OA than for LA on β-LG, although the binding constants of the 2 fatty acids were similar, with both acids interacting with the protein though van der Waals and hydrogen bonding interactions. This study could help provide a deeper understanding of the structural basis for formation of antitumor protein-fatty acid complexes.