, "Scene-library-based video coding scheme exploiting long-term temporal correlation," J. Electron. Imaging 26(4), 043026 (2017), doi: 10.1117/1.JEI.26.4.043026. Abstract. In movies and TV shows, it is common that several scenes repeat alternately. These videos are characterized with the long-term temporal correlation, which can be exploited to improve video coding efficiency. However, in applications supporting random access (RA), a video is typically divided into a number of RA segments (RASs) by RA points (RAPs), and different RASs are coded independently. In such a way, the long-term temporal correlation among RASs with similar scenes cannot be used. We present a scene-library-based video coding scheme for the coding of videos with repeated scenes. First, a compact scene library is built by clustering similar scenes and extracting representative frames in encoding video. Then, the video is coded using a layered scene-library-based coding structure, in which the library frames serve as long-term reference frames. The scene library is not cleared by RAPs so that the long-term temporal correlation between RASs from similar scenes can be exploited. Furthermore, the RAP frames are coded as interframes by only referencing library frames so as to improve coding efficiency while maintaining RA property. Experimental results show that the coding scheme can achieve significant coding gain over state-of-the-art methods. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.