A survey on confidence calibration of deep learning under class imbalance data
Jinzong Dong,
Zhaohui Jiang,
Dong Pan
et al.
Abstract:Confidence calibration in classification models, a technique to achieve accurate posterior probability estimation for classification results, is crucial for assessing the likelihood of correct decisions in real-world applications. Class imbalance data, which biases the learning of the model and subsequently skews the posterior probabilities of the model, makes confidence calibration more challenging. Especially for often more important minority classes with high uncertainty, confidence calibration is more comp… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.