This chapter presents a fog computing enabled cellular network (FeCN), in which the high user-mobility feature brings critical challenges for service continuity under stringent service requirements. Service migration is promising to fulfill the service continuity during mobility. However, service migration cannot be completed immediately and may lead to situations where the user-experience degrades. For this, a quality-of-service aware service migration strategy is proposed. The method is based on existing handover procedures with newly introduced distributed fog computing resource management scheme to minimize the potential negative effects induced by service migration. The performance of the proposed schemes is evaluated by a case study, where realistic vehicular mobility pattern in the metropolitan network of Luxembourg is used. Results show that low end-to-end latency for vehicular communication can be achieved. During service migration, both the traffic generated by migration and the other traffic (e.g., control information, video) are transmitted via mobile backhaul networks. To balance the performance of the two kinds of traffic, a delay-aware bandwidth slicing scheme is proposed. Simulation results show that, with the proposed method, migration data can be transmitted successfully within a required time threshold, while the latency and jitter for nonmigration traffic with different priorities can be reduced significantly.