The manufacturing industry must maintain high-quality standards while meeting customer demands for customization, reduced carbon footprint, and competitive pricing. To address these challenges, companies are constantly improving their production processes using quality management tools. A crucial aspect of this improvement is the root cause analysis of manufacturing defects. In recent years, there has been a shift from traditional knowledge-driven approaches to data-driven approaches. However, there is a gap in the literature regarding a systematic overview of both methodological types, their overlaps, and the challenges they pose. To fill this gap, this study conducts a scoping literature review of root cause analysis in manufacturing, focusing on both data-driven and knowledge-driven approaches. For this, articles from IEEE Xplore, Scopus, and Web of Science are examined. This review finds that data-driven approaches have become dominant in recent years, with explainable artificial intelligence emerging as a particularly strong approach. Additionally, hybrid variants of root cause analysis, which combine expert knowledge and data-driven approaches, are also prevalent, leveraging the strengths of both worlds. Major challenges identified include dependence on expert knowledge, data availability, and management issues, as well as methodological difficulties. This article also evaluates the potential of artificial intelligence and hybrid approaches for the future, highlighting their promises in advancing root cause analysis in manufacturing.