2021
DOI: 10.29292/jics.v16i2.505
|View full text |Cite
|
Sign up to set email alerts
|

A Survey on System-Level Design of Neural Network Accelerators

Abstract: In this paper, we present a brief survey on the system-level optimizations used for convolutional neural network (CNN) inference accelerators. For the nested loop of convolutional (CONV) layers, we discuss the effects of loop optimizations such as loop interchange, tiling, unrolling and fusion on CNN accelerators. We also explain memory optimizations that are effective with the loop optimizations. In addition, we discuss streaming architectures and single computation engine architectures that are commonly used… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 36 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?