Parallelization is an important paradigm for solving massive optimization problems. Understanding how to fully benefit form the aggregated computing power and what makes a parallel strategy successful is a difficult issue. In this study, we propose a simple parallel iterative tabu search (PITS) and study its effectiveness with respect to different experimental settings. Using the quadratic assignment problem (QAP) as a case study, we first consider different small-and medium-size instances from the literature and then tackle a large-size instance that was rarely considered due the its inherent solving difficulty. In particular, we show that a balance between the number of function evaluations each parallel process is allowed to perform before resuming the search is a critical issue to obtain an improved quality.