Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The HTML5 is used to display high quality graphics in web applications such as web games (i.e., games). However, automatically testing games is not possible with existing web testing techniques and tools, and manual testing is laborious. Many widely used web testing tools rely on the Document Object Model (DOM) to drive web test automation, but the contents of the are not represented in the DOM. The main alternative approach, snapshot testing, involves comparing oracle snapshot images with test-time snapshot images using an image similarity metric to catch visual bugs, i.e., bugs in the graphics of the web application. However, creating and maintaining oracle snapshot images for games is onerous, defeating the purpose of test automation. In this paper, we present a novel approach to automatically detect visual bugs in games. By leveraging an internal representation of objects on the , we decompose snapshot images into a set of object images, each of which is compared with a respective oracle asset (e.g., a sprite) using four similarity metrics: percentage overlap, mean squared error, structural similarity, and embedding similarity. We evaluate our approach by injecting 24 visual bugs into a custom game, and find that our approach achieves an accuracy of 100%, compared to an accuracy of 44.6% with traditional snapshot testing. CCS CONCEPTS• Software and its engineering → Software testing and debugging.
Record-replay testing is widely used in mobile app testing as an automated testing method. However, the current record-replay methods are closely dependent on the internal information of the device or app under test. Due to the diversity of mobile devices and system platforms, their practical use is limited. To break this limitation, this paper proposes an entirely black-box learning-replay testing approach by combining robotics and vision technology to achieve a record-replay testing that can support cross-device and cross-platform. Firstly, vision technology is used to extract the critical information of GUI and gesture actions during the tester’s testing process; secondly, the GUI composition and test actions are analyzed to form a test sequence; finally, the robotic arm is guided to complete the replay of the test sequence through visual judgment. On the one hand, the approach in this paper does not access the interior of the app, shielding the association between test actions and device; on the other hand, it captures more abstract test action information instead of simple operation location records and supports more flexible test action replay. We demonstrate the effectiveness of this approach by evaluating the learning-replay of 12 popular apps for 13 typical scenarios on the same device, across devices, and across platforms.
The road is the most commonly used means of transportation and serves as a country’s arteries, so it is extremely important to keep the roads in good condition. Potholes that happen to appear in the road must be repaired to keep the road in good condition. Spotting potholes on the road is difficult, especially in a country like India where roads stretch millions of kilometres across the country. Therefore, there is a need to automate the identification of potholes with high speed and real-time precision. YOLOX is an object detection algorithm and our main goal of this article is to train and analyse the YOLOX model for pothole detection. The YOLOX model is trained with a pothole dataset and the results obtained are analysed by calculating the accuracy, recall and size of the model which is then compared to other YOLO algorithms. The experimental results in this article show that the YOLOX-Nano model predicts potholes with higher accuracy compared to other models while having low computational costs. We were able to achieve an Average Precision (AP) value of 85.6% from training the model and the total size of the model is 7.22 MB. The pothole detection capabilities of the newly developed YOLOX algorithm have never been tested before and this paper is one of the first to detect potholes using the YOLOX object detection algorithm. The research conducted in this paper will help reduce costs and increase the speed of pothole identification and will be of great help in road maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.