Protein misfolding and formation of β-sheet-rich amyloid fibrils or aggregates is related to cellular toxicity and decay in various human disorders including Alzheimer's and Parkinson's disease. Recently, we demonstrated that the polyphenol (-)-epi-gallocatechine gallate (EGCG) inhibits α-synuclein and amyloid-β fibrillogenesis. It associates with natively unfolded polypeptides and promotes the self-assembly of unstructured oligomers of a new type. Whether EGCG disassembles preformed amyloid fibrils, however, remained unclear. Here, we show that EGCG has the ability to convert large, mature α-synuclein and amyloid-β fibrils into smaller, amorphous protein aggregates that are nontoxic to mammalian cells. Mechanistic studies revealed that the compound directly binds to β-sheetrich aggregates and mediates the conformational change without their disassembly into monomers or small diffusible oligomers. These findings suggest that EGCG is a potent remodeling agent of mature amyloid fibrils.Alzheimer | Parkinson | catechine | misfolding | oligomer P revious studies have shown that the polyphenol (-)-epi-gallocatechine gallate (EGCG), found in large amounts in green tea, has antiamyloidogenic properties and modulates the misfolding of disease proteins and prions (1-5). EGCG directly binds to unfolded polypeptide chains and inhibits β-sheet formation, an early event in the amyloid formation cascade (6). In the presence of EGCG, the assembly of a new type of unstructured, SDSstable, nontoxic oligomer was observed, instead of the expected formation of β-sheet-rich aggregates. This suggested that the compound redirects aggregation prone polypeptides into offpathway protein assemblies (6), as has since been confirmed for other flavonoids (7).These findings raise the question of whether EGCG might also be able to disassemble preformed, β-sheet-rich structures as well as earlier intermediates of fibrillogenesis. Other small molecules such as curcumin or short β-sheet breaker peptides were described to have this ability; however, their mechanism of action has not been elucidated (8,9). In the present study, we examined the ability of EGCG to alter the structure of mature amyloid fibrils with biochemical and biophysical as well as cell-based assays.
Results and DiscussionTo study the effect of EGCG on preformed amyloid aggregates, we first produced α-synuclein (αS) fibrils by incubating natively unfolded monomers (100 μM) at 37°C for 7 d in phosphate buffer. Then aggregates were characterized by EM, atomic force microscopy (AFM), Thioflavin T (ThT) binding assays, and CD spectroscopy (Fig. S1). We observed that the in vitro generated αS aggregates have a β-sheet structure and a fibrillar morphology. Moreover, they efficiently bind the dye ThT, supporting previously published results (10).Next, we added an equimolar concentration of EGCG to the fibrils (50 μM αS monomer equivalent). The effect of the compound was monitored by time-resolved EM and AFM. We found that EGCG very efficiently remodels the ordered, fibrillar morphology ...