Abstract. We demonstrate that daily pollutant transport patterns in East Asia are visible from satellite images when 15 inspected with corresponding synoptic weather analyses. Transport pathways of air pollutants in East Asia are investigated using satellite observations, surface weather charts, and chemical-transport model simulations. It is found that during cool season (fall to spring), pollutant transports in East Asia are largely determined by synoptic weather patterns associated with high pressure system over southern China, which is extended from the Siberia High, and low pressure system over Manchuria, which is initiated by Altai-Sayan cyclogenesis. Based on the relative location and strength of these weather 20 systems, three types of synoptic weather patterns that may contribute to pollutants transport in East Asia, especially in China and Korea, are identified: i.e., (1) a strengthening of the Siberian High and its southeastward propagation; (2) a high-pressure system over southern China followed by a frontal passage associated with a northern low-pressure system; and (3) a stagnant high-pressure system over southern China. For all three patterns, the high-pressure system in southern China is essential for the development of regional air pollution, while frontal activities associated with low-pressure system provide a forcing 25 mechanism to transport those pollutants eastward or southeastward. Observed and simulated surface PM distributions show good agreement in both aerosol optical depth and NO2 column density further implying that anthropogenic emissions also contribute to regional events of high surface PM concentrations. It is argued that the quasi-periodic migration of synoptic weather systems in East Asia works as an efficient pump of pollutants; i.e., regional air pollutions developed under highpressure systems are transported downstream by low-pressure systems. 30