The tumor microenvironment (TME) is the ecosystem surrounding a tumor, which usually consists of nontumoral cells or components, and molecules they produce and release. The frequent and continuous interplay between tumor cells and the TME strongly affects tumor development, disease progression, metastasis, and responses to therapeutic interventions. As a hub of potential therapeutic targets, the TME has gained appreciable momentum in cancer research. Here we systematically review the progress in targeting the TME as a strategy to develop novel antitumor drugs from the immunological, stromal and extracellular matrix components of the TME, shedding light on its complex synergies with tumor cells. This exploration highlights the transformative potential these elements hold in refining cancer treatment approaches. This thorough examination not only accentuates the TME's multifaceted nature but also positions it as a formidable avenue for propelling forward the paradigms of cancer therapy. This review aims to foster a deeper understanding of the TME's role in oncogenesis and its potential exploitation in advancing targeted, efficacious cancer treatments, marking a significant stride in the realm of cancer research.