To improve the magnetic properties of iron-based soft magnetic composites (SMCs), polytetrafluoroethylene (PTFE) with excellent heat resistance, electrical insulation, and extremely high electrical resistivity was chosen as an insulating coating material for the preparation of iron-based SMCs. The effects of PTFE content, compaction pressure, and annealing treatment on the magnetic properties of Fe/PTFE SMCs were investigated in detail. The results demonstrate that the PTFE insulating layer is successfully coated on the surface of iron powders, which effectively reduces the core loss, increases the resistivity, and improves the frequency stability and the quality factor. Under the combined effect of optimal PTFE content, compaction pressure, and annealing treatment, the iron-based SMCs exhibit a high effective permeability of 56, high saturation magnetization of 192.9 emu/g, and low total core losses of 355 mW/cm3 and 1705 mW/cm3 at 50 kHz for Bm = 50 mT and 100 mT. This work provides a novel insulating coating layer that optimizes magnetic properties and is advantageous for the development of iron-based SMCs. In addition, it also provides a comprehensive understanding of the relationship between process parameters and magnetic properties, which is of great guiding significance for scientific research and industrial production.