A device for measuring human breath ammonia was developed based on a single use, disposable, inkjet printed ammonia sensor fabricated using polyaniline nanoparticles. The device was optimized for sampling ammonia in human breath samples by addressing issues such as variations in breath sample volume, flow rate, sources of oral ammonia, temperature and humidity. The resulting system was capable of measuring ammonia in breath from 40 to 2993 ppbv (r(2 )= 0.99, n = 3) as correlated with photoacoustic laser spectroscopy and correlation in normal human breath samples yielded a slope of 0.93 and a Pearson correlation coefficient of 0.9705 (p < 0.05, n = 11). Measurement of ammonia in the breath of patients with end-stage kidney disease demonstrated its significant reduction following dialysis, while also correlating well with blood urea nitrogen (BUN) (r = 0.61, p < 0.01, n = 96). Excellent intraindividual correlations were demonstrated between breath ammonia and BUN (0.86 to 0.96), which demonstrates the possibility of using low cost point of care breath ammonia systems as a noninvasive means of monitoring kidney dysfunction and treatment.