The main objective of this study was to design a journal bearing, such that it can withstand the forces that arise in context to increasing the length of the shaft in an automotive turbocharger. The work will also provide information on how the design changes affect the overall performance of the bearing. The design changes include the thickness of the oil film, the number of grooves, the dimension of the grooves, the number of inlets and outlets, the dimension of the babbitt and mainly the length of the journal bearing. The simulation models were created using CATIA V5 and the analysis is done using ANSYS 19.2. The flow is considered to be laminar and is calculated using Reynold’s Equation. The new concept gave insight on how the design considerations affect the pressure distribution and the pressure developed. From the results, it was interpreted that the new design can withstand the four times the pressure while distributing the pressure over twice the original design.