A Systematic Approach to Portfolio Optimization: A Comparative Study of Reinforcement Learning Agents, Market Signals, and Investment Horizons
Francisco Espiga-Fernández,
Álvaro García-Sánchez,
Joaquín Ordieres-Meré
Abstract:This paper presents a systematic exploration of deep reinforcement learning (RL) for portfolio optimization and compares various agent architectures, such as the DQN, DDPG, PPO, and SAC. We evaluate these agents’ performance across multiple market signals, including OHLC price data and technical indicators, while incorporating different rebalancing frequencies and historical window lengths. This study uses six major financial indices and a risk-free asset as the core instruments. Our results show that CNN-base… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.