High speed rotor systems with magnetic bearings have been the subject of much research in recent years due to the potential for active vibration control. In this thesis, optimal design was conducted for an 8-pole heteropolar magnetic bearing used in the flexible rotor of a turbo blower. In connection with bearing stiffness, this optimal design process was conducted using a genetic algorithm(GA), which is based on natural selection and genetics. The maximum stiffness of the magnetic bearing-rotor was found by considering the critical speeds of the flexible rotor. As a result, the magnetic bearings were optimized to have maximum stiffness.