SUMMARY
This paper focuses on the results of the linear stability analysis of the finite‐difference weighted essentially non‐oscillatory (WENO) schemes with optimal weights. The standard WENO schemes between the third and 11th order, the order‐optimised WENO schemes of the sixth and eighth order and the bandwidth‐optimised WENO schemes of the third and fourth order are considered. Several explicit Runge–Kutta schemes including the recently published strong stability‐preserving explicit Runge–Kutta schemes are considered for time discretisation. The stability limits as well as dissipation and dispersion properties dependent on the Courant–Friedrichs–Lewy number are presented for a hyperbolic model equation. The different combinations of space and time discretisation schemes are compared in terms of their accuracy and efficiency. For a parabolic model equation, the viscous term is discretised with high‐order central differences. The stability limits for the parabolic problem are presented as well. Numerical results of linear test cases are shown. Copyright © 2011 John Wiley & Sons, Ltd.