2022
DOI: 10.48550/arxiv.2207.00812
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data

Abstract: In this paper we provide a structured literature analysis focused on Deep Learning (DL) models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. The work focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 71 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?