ObjectivesThe aim of this study is to explore the current and future state of quality measurement and feedback and identify factors influencing measurement feedback systems, including the barriers and enablers to their effective design, implementation, use and translation into quality improvement.DesignThis qualitative study used semistructured interviews with key informants. A deductive framework analysis was conducted to code transcripts to the Theoretical Domains Framework (TDF). An inductive analysis was used to produce subthemes and belief statements within each TDF domain.SettingAll interviews were conducted by videoconference and audio-recorded.ParticipantsKey informants were purposively sampled experts in quality measurement and feedback, including clinical (n=5), government (n=5), research (n=4) and health service leaders (n=3) from Australia (n=7), the USA (n=4), the UK (n=2), Canada (n=2) and Sweden (n=2).ResultsA total of 17 key informants participated in the study. The interview length ranged from 48 to 66 min. 12 theoretical domains populated by 38 subthemes were identified as relevant to measurement feedback systems. The most populous domains includedenvironmental context and resources,memory, attention and decision-making, andsocial influences. The most populous subthemes included ‘quality improvement culture’, ‘financial and human resource support’ and ‘patient-centred measurement’. There were minimal conflicting beliefs outside of ‘data quality and completeness’. Conflicting beliefs in these subthemes were predominantly between government and clinical leaders.ConclusionsMultiple factors were found to influence measurement feedback systems and future considerations are presented within this manuscript. The barriers and enablers that impact these systems are complex. While there are some clear modifiable factors in the design of measurement and feedback processes, influential factors described by key informants were largely socioenvironmental. Evidence-based design and implementation, coupled with a deeper understanding of the implementation context, may lead to enhanced quality measurement feedback systems and ultimately improved care delivery and patient outcomes.