Abstract. The purpose of the present study was to investigate the association of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) expression with the histopathological grading of tumors in cerebral glioma. A total of 45 patients with pathologically confirmed cerebral glioma were divided into two groups: a low-grade group (grades I and II, 21 cases) and a high-grade group (grades III and IV, 24 cases). Immunohistochemical staining of tumor samples showed the percentages of tumors expressing VEGF and MMP-9 in the high-grade group to be 95.83 and 75%, respectively, significantly higher than those of the low-grade group (66.67 and 23.81%, P<0.05 and P<0.01, respectively). The magnetic resonance imaging (MRI) results indicated that the peripheral edema index (EI), enhancement percentage (EP), and the maximum diameter of the tumor in the high-grade group were significantly higher than those in the low-grade group (P<0.05, P<0.01, and P<0.05). Moreover, the expression of VEGF and MMP-9 was positively correlated with EI, EP and the maximum diameter of the tumor (P<0.05). Therefore, VEGF and MMP-9 expression were correlated to the invasion of glioma. The association of their expression levels with EI, EP and the maximum tumor diameter indicates that these markers may be used to estimate tumor malignancy for future clinical diagnosis and treatment.
IntroductionNeuroglioma, or glioma, is the most common primary tumor of the central nervous system, accounting for approximately 40-50% of all intracranial tumors (1). These tumors are characterized by a high invasive potential and a wide diversity of histological appearance. As with other tumors, one of the crucial steps in invasion is angiogenesis of the peritumoral tissues (2,3). Two primary factors that mediate tumor angiogenesis, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9), have been researched in various tumor types (1-3). These studies show that VEGF and MMP-9 expression varies in the majority of tumor cells and is directly associated with tumor invasion.Recent advances in imaging techniques have increased the use of non-invasive examination in the diagnosis and treatment of glioma. Magnetic resonance imaging (MRI) is one such valuable imaging technique, which has the advantages of non-traumatic, non-ionizing radiation and multiple planar imaging. In combination with other approaches, MRI is capable of visualizing various intracranial lesions (both structural and functional) and detecting the correlation between the major white matter fiber bundle and glioma lesions. Additionally, the complexity of these tumors has generated interest in identifying biomarkers that are capable of aiding in the diagnosis and treatment of gliomas (4). The current study used MRI to determine the correlation of expression of VEGF and MMP-9 with MRI characteristics and clinical pathological grades of cerebral gliomas to aid in clinical treatment and prognosis assessment.
Materials and methodsStudy subjects. The study involved...