The
intrinsic conformational preferences of small peptides may
provide additional insight into the thermodynamics and kinetics of
protein folding. In this study, we explore the underlying energy landscapes
of two model peptides, namely, Ac-Ala-NH
2
and Ac-Ser-NH
2
, using geometry-optimization-based tools developed within
the context of energy landscape theory. We analyze not only how side-chain
polarity influences the structural preferences of the dipeptides,
but also other emergent properties of the landscape, including heat
capacity profiles, and kinetics of conformational rearrangements.
The contrasting topographies of the free energy landscape agree with
recent results from Fourier transform microwave spectroscopy experiments,
where Ac-Ala-NH
2
was found to exist as a mixture of two
conformers, while Ac-Ser-NH
2
remained structurally locked,
despite exhibiting an apparently rich conformational landscape.