2023
DOI: 10.1145/3596519
|View full text |Cite
|
Sign up to set email alerts
|

A Systematic Study on Reproducibility of Reinforcement Learning in Recommendation Systems

Abstract: Reproducibility is a main principle in science and fundamental to ensure scientific progress. However, many recent works point out that there are widespread deficiencies for this aspect in the AI field, making the reproducibility of results impractical or even impossible. We therefore studied the state of reproducibility support on the topic of Reinforcement Learning & Recommender Systems to analyse the situation in this context. We collected a total of 60 papers and analysed them by defining a set of vari… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 73 publications
0
0
0
Order By: Relevance