Objective This study examined a system-level perspective to investigate the changes in the whole trunk and head postures while sitting with various lower extremity postures. Background Sitting biomechanics has focused mainly on the lumbar region only, whereas the anatomy literature has suggested various links from the head and lower extremity. Method Seventeen male participants were seated in six lower extremity postures, and the trunk kinematics and muscle activity measures were captured for 5 s. Results Changes in the trunk-thigh angle and the knee angle affected the trunk and head postures and muscle recruitment patterns significantly, indicating significant interactions between the lower extremity and trunk while sitting. Specifically, the larger trunk-thigh angle (T135°) showed more neutral lumbar lordosis (4.0° on average), smaller pelvic flexion (1.8°), smaller head flexion (3.3°), and a less rounded shoulder (1.7°) than the smaller one (T90°). The smaller knee angle (K45°) revealed a more neutral lumbar lordosis (6.9°), smaller pelvic flexion (9.2°), smaller head flexion (2.6°), and less rounded shoulder (2.4°) than the larger condition (K180°). The more neutral posture suggested by the kinematic measures confirmed significantly less muscular recruitment in the trunk extensors, except for a significant antagonistic co-contraction. Conclusion The lower and upper back postures were more neutral, and back muscle recruitment was lower with a larger trunk-thigh angle and a smaller knee angle, but at the cost of antagonistic co-contraction. Application The costs and benefits of each lower extremity posture can be used to design an ergonomic chair and develop an improved sitting strategy.