Several techniques have been proposed that attempt to reconstruct a sparse signal from fewer samples than the ones required by the Nyquist theorem. In this paper, an undersampling technique is presented that allows the reconstruction of the sparse information that is transmitted through Orthogonal Frequency Division Multiplexing (OFDM) modulation. The properties of the Discrete Fourier Transform (DFT) that is employed by the OFDM modulation, allow the estimation of several samples from others that have already been obtained on the side of the receiver, provided that special relations are valid between the original data values. The inherent sparseness of the original data, as well as the Forward Error Correction (FEC) techniques employed, can assist the information recovery from fewer samples. It will be shown that up to 1/4 of the samples can be omitted from the sampling process and substituted by others on the side of the receiver for the successful reconstruction of the original data. In this way, the size of the buffer memory used for sample storage, as well as the storage requirements of the Fast Fourier Transform (FFT) implementation at the receiver, may be reduced by up to 25%. The power consumption of the Analog Digital Converter on the side of the receiver is also reduced when a lower sampling rate is used.