Organisations such as hospitals and the public are increasingly relying on large computer networks to access information and to communicate multimedia-type data. To assess the effectiveness of these networks, the traffic parameters need to be analysed. Due to the quantity of the data packets, examining each packet's transmission parameters is not practical, especially in real time. Sampling techniques allow a subset of packets that accurately represents the original traffic to be examined and they are thus important in evaluating the performance of multimedia networks. In this study, an adaptive sampling technique based on regression and a fuzzy inference system was developed. The technique dynamically updates the number of packets sampled by responding to the traffic's variations. Its performance was found to be superior to the conventional nonadaptive sampling methods.