Abstract. Most interesting proofs in mathematics contain an inductive argument which requires an extension of the LK-calculus to formalize. The most commonly used calculi for induction contain a separate rule or axiom which reduces the valid proof theoretic properties of the calculus. To the best of our knowledge, there are no such calculi which allow cut-elimination to a normal form with the subformula property, i.e. every formula occurring in the proof is a subformula of the end sequent. Proof schemata are a variant of LK-proofs able to simulate induction by linking proofs together. There exists a schematic normal form which has comparable proof theoretic behaviour to normal forms with the subformula property. However, a calculus for the construction of proof schemata does not exist. In this paper, we introduce a calculus for proof schemata and prove soundness and completeness with respect to a fragment of the inductive arguments formalizable in Peano arithmetic.