“…However, this literature has expanded in other directions, including mechanisms of adult neurogenesis (Dunlap et al ., ; Zupanc, ), the influence of steroid and peptide hormones on communication signals (Dunlap et al ., ; Gavassa et al ., ; Markham & Stoddard, ; Smith, ; Zakon & Dunlap, ) and the mechanisms of electrolocation, object imaging and perception, (Caputi et al ., ; Nelson, ; Pedraja et al ., ; Pereira & Caputi, ; von der Emde, ). Newly available proteonomic, transcriptomic and genomic tools have also enhanced our understanding of the molecular bases of electroreception (Bellono et al ., ) and electrogenesis (Ching et al ., ; Güth et al ., ; Lamanna et al ., ; Nagel et al ., ; Pinch et al ., ; Traeger et al ., ; Zakon et al ., ), as well as the convergent origins of myogenic electric organs in multiple vertebrate lineages (Arnegard et al ., ; Gallant et al ., ; Thompson et al ., ; Zakon, ; Zakon et al ., ). Much of the neurobiological work on weakly electric fishes has focused on the following model species: Gnathonemus petersii (Günther 1862; Mormyridae), Gymnotus omarorum Richer‐de‐Forges, Crampton & Albert 2009 (Gymnotidae), Brachyhypopomus gauderio Giora & Malabarba 2009 (Hypopomidae), Sternopygus macrurus (Bloch & Schneider 1801) (Sternopygidae), Apteronotus albifrons (L. 1766) (Apteronotidae) and Apteronotus leptorhynchus (Ellis 1912) (Apteronotidae).…”