Considerable research has been undertaken over the past two decades to apply remote sensing to the study of fire regimes across the savannas of northern Australia. This work has focused on two spatial scales of imagery resolution: coarse-resolution NOAA-AVHRR imagery for savanna-wide assessments both of the daily distribution of fires ('hot spots'), and cumulative mapping of burnt areas ('fire-scars') over the annual cycle; and fine-resolution Landsat imagery for undertaking detailed assessments of regional fire regimes. Importantly, substantial effort has been given to the validation of fire mapping products at both scales of resolution. At the savanna-wide scale, fire mapping activities have established that: (1) contrary to recent perception, from a national perspective the great majority of burning in any one year typically occurs in the tropical savannas; (2) the distribution of burning across the savannas is very uneven, occurring mostly in sparsely settled, higher rainfall, northern coastal and subcoastal regions (north-west Kimberley, Top End of the Northern Territory, around the Gulf of Carpentaria) across a variety of major land uses (pastoral, conservation, indigenous); whereas (3) limited burning is undertaken in regions with productive soils supporting more intensive pastoral management, particularly in Queensland; and (4) on a seasonal basis, most burning occurs in the latter half of the dry season, typically as uncontrolled wildfire. Decadal fine-resolution fire histories have also been assembled from multi-scene Landsat imagery for a number of fire-prone large properties (e.g. Kakadu and Nitmiluk National Parks) and local regions (e.g. Sturt Plateau and Victoria River District, Northern Territory). These studies have facilitated more refined description of various fire regime parameters (fire extent, seasonality, frequency, interval, patchiness) and, as dealt with elsewhere in this special issue, associated ecological assessments. This paper focuses firstly on the patterning of contemporary fire regimes across the savanna landscapes of northern Australia, and then addresses the implications of these data for our understanding of changes in fire regime since Aboriginal occupancy, and implications of contemporary patterns on biodiversity and emerging greenhouse issues.