In this paper, a method of color discrimination based on sample sensitivity to light wavelength is proposed based on the reflection spectra of a large number of samples and the statistical calculation of the measurement data. A laser detection system is designed to realize the color discrimination. For the color discrimination of polycrystalline silicon cells, the most sensitive wavelength, 434 nm, and the least sensitive wavelength, 645 nm, of polycrystalline silicon cells is obtained according to this method. A laser detection system was built to measure the polycrystalline silicon cells. This system consists of two lasers, optical shutters, collimating beam expanding systems, an optical coaxial system, sample platform, collecting lens, and optical power meter or optical sensor. Two laser beams of different wavelengths are beamed coaxially through the optical coaxial system onto a polycrystalline silicon cell and are reflected or scattered. The reflected or scattered lights are collected through a lens with a high number aperture and received separately by the optical power meter. Then the color value of the polycrystalline silicon cell in this system is characterized by the ratio of light intensity data received. The system measured a large number of previous polycrystalline silicon cells to form the different color categories of polycrystalline silicon cells of this system in the computer database. When a new polycrystalline silicon cell is measured, the color discrimination system can automatically classify the new polycrystalline silicon cell to a certain color category in order to achieve color discrimination.