Distributing tasks to processors in distributed real time systems is an important step for obtaining high performance. Scheduling algorithms play a vital role in achieving better performance and high throughput in heterogeneous distributed real time systems. To make the best use of the computational power available, it is essential to assign the tasks to the processor whose characteristics are most appropriate for the execution of the tasks in a distributed processing system. This study develops two algorithms for clustering the heavily-communicating tasks to reduce the inter-tasks communication costs by using k-means and fuzzy c-means clustering techniques respectively. In order to minimize the system cost and response time, an algorithm is developed for the proper allocation of formed clusters to the most suitable processor. The present algorithms are collated with problems in literature. The proposed algorithms are formulated and applied to numerous numerical examples to demonstrate their effectiveness.